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INTRODUCTION

Germline mutations of the tumor suppressor gene BRCA2 have been shown to predispose
their carriers to breast and ovarian cancers (1, 2) and to increase their risk for many other types
of cancer (3-5). As is the case with many other tumor suppressor genes, the wild-type allele of
the BRCA2 locus is frequently lost in tumors of patients carrying a mutant BRCA2 allele (3, 6-8).
However, unlike those of most tumor suppressor genes but similar to those of BRCA1, somatic
mutations of BRCA2, are rarely found in sporadic breast or ovarian cancers (9-13). Furthermore,
mutation analysis of BRCAé in more than 200 cell lines derived from a variety of human cancers
has identified only one pancreatic cancer cell line (Capan-1) that carries a hemizygous mutation
(12). The BRCA2 mutation found in Capan-1 is 6174delT (12, 14), a mutation found frequently
in Ashkenazi Jews and one that clearly predisposes its carriers to a variety of cancers (3, 15-19).
These observations strongly indicate that the Capan-1 cell line was derived from a patient with
germline BRCA2 mutation.

The BRCA?2 gene encodes a transcript that is larger than 10 kb and is predicted to produce
a protein of 3418 amino acids (2). The BRCA2 protein preferentially localizes to the nucleus (20,
21). Analysis of the predicted BRCA2 amino acid sequence Has identified several internal
repeats (22, 23). These BRC repeats are highly conserved among different species but lack
homology with any known functional domain. The BRCA2 protein has been shown to interact
with RADS51 through its BRC repeats and carboxyl terminus (21, 24-28).

The Saccharomyces cerevisiae RADS51 belongs to the RADS2 epistasis group that is
essential for repairing double-strand DNA breaks (DSB) by homologous recombination
(reviewed in (29). The Rad51 gene is essential for mouse embryonic development in vivo and for

the growth of the chicken DT40 cell line in vitro (30-32). Mouse embryo cells without Rad51 are
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hypersensitive to ionizing radiation and have reduced DNA content, while DT40 cells without
Rad51 exhibit a high frequency of chromosomal breakage before death (30, 32). Inactivation of
Rad54, a member of the Rad52 group, also increases sensitivity to ionizing radiation (33, 34). In
addition, Rad52 and Rad54 are important for homologous recombination in vertebrate cells (33-
36). Mouse cells lacking a functional Brca2 gene also have been shown to be deficient in
repairing DNA damage (24, 37-40).

The mechanism for the tumor suppression function of BRCA2 in human is not
understood. However, the identification of the association of BRCA2 with RADS1 and studies of
Brca2 knockout mice have led to the suggestion that BRCA2 participates in RADS51-mediated
repair of DSB (24, 37, 38, 41, 42). A clearer understanding of the functions of BRCA2 will lead
to a better understanding of tumorigenesis in mutant BRCA2 carriers. It also could have a great
impact on the understanding of breast cancer development in general. One major difficulty in
studying the function of BRCA2 is that there is no human breast cancer cell line that does not
express wild-type BRCA2. The only human cell line that does not expfess wild-type BRCA2 is
Capan-1, a pancreatic cancer cell line. Although Capan-1 has been shown to be hypersensitive to
DNA-damaging agents (21, 43), it is not clear whether this property is common to other human
cells lacking functional BRCA2.

This study was designed to determine whether BRCA2 has a role in DNA repair in
human somatic cells. The objectives of this study are:(1) Generation of derivatives of the
pancreatic cancer cell line Capan-1 that conditionally express wild-type BRCA2, (2) Generation
of derivatives of the normal breast epithelial cell line MCF-12A and the breast cancer cell line

MCF?7 that do not express wild-type BRCA2, and (3) Characterization of the effects of altered
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expression of BRCA?2 on the genomic integrity of cells. In the past three years of this study we

have accomplished all these tasks.

BODY

Materials and Methods

Cell lines. Capan-1 is a human pancreatic cancer cell line that expresses only truncated BRCA2.
HCT116 is a colon cancer cell line, MCF12A is a normal human breast epithelial cell line,
MCF7 is a breast cancer cell line and Dul4S5 is a prostate cancer cell line.

Plasmids. We isolated the cDNA for the entire coding region of BRCA2 by reverse transcription
(RT)-polymerase chain reaction (PCR). Because of its large size, the BRCA2 coding region was
divided into four fragments for RT-PCR. Several clones of each amplified fragment were
sequenced to identify those did not contain any mutation resulted from the PCR reaction. These
fragments were sequentially ligated together to obtain the full-length cDNA for BRCA2. The
Xhol restriction site was engineered at the both ends of the assembled BRCA2 cDNA. To
facilitate the assembly of the full length coding cDNA of BRCA2, codon 798 was changed from
CTC to CTT to create a HindllI restriction site; however, this change does not alter the encoded
amino acid. The BRCA2 cDNA was inserted into a derivative of pUHD10-3 (44) to construct a
plasmid that expresses BRCA2 under the control of a tetracycline-regulated promoter.

The plasmid expressing small interference RNA (siRNA) targeting BRCA2 was generated
according to a published strategy (45). Plasmids expressing two siRNA targeting the sequences
5’-GAGCAGCATCTTGAATCTC-3’ and 5’-GGAGGACTCCTTATGTCCA-3’ of BRCA2 were
first generated and then the two transcription units were combined in a single plasmid in a head-

to-tail direction.
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Generation of Capan-1 derivatives. The control clones, Control 1 and 2, and tetracycline-

regulated wild-type BRCA2 expressing clones, Clones A and B, were generated similar to
described above but used a plasmid expressing tetracycline regulator (tTA), tTA-IRES-Neo (46),
together with a derivative of pUHD10-3 (44) that expressed BRCA2 at 1:9 ratio using
Lipofectamine Plus (Life Technologies) then selected with G418. The two control clones express
functional tTA as determined by tTA-reporter assay, but do not express wild-type BRCA2 as
determined by immunoblotting.

Clones C1 and C2 are Capan-1 derivatives that constitutively express the wild-type
BRCA2 and were generated similar to those described above but used a plasmid expressing the
reverse tetracycline regulator (rtTA) instead of one expressing tTA. Two wild-type BRCA2
expressing clones were obtained but the expression of the wild-type BRCA2 was constitutive
instead of regulated.

Generation of MCF12A derivatives. MCF12A cells were transfected with pPCMV-NEO-BAM

(47) together with a plasmid expressing two siRNA targeting BRCA2 at 1:9 ratio using
Lipofectamine Plus (Life Technologies) then selected with G418. Levels of BRCA2 expressed in
selected clones were determined by using immunoblotting.
Immunoblotting, immunoprecipitation and immunofluorescence staining. Detection of BRCA2
by immunoblotting was performed as previously described by using the BRCA2 antibodies N61
(48). RADS51 was detected by using a monoclonal antibody purchased from GeneTex (San
Antonio, TX).

For immunoprecipitation, cells were lysed in a buffer containing 150 mM NaCl, 50 mM

Tris-HCI, pH 8.0 and 0.5% Nonidet P-40. Immunoprecipitation of BRCA2 was carried out using
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a rabbit polyclonal antibody against the C terminus of BRCA2 (Ab-2, Oncogene Science,
Cambridge, MA). BRCA2 proteins were detected by immunoblot analysis as described above.

RADS]1 in cells was detected by immunofluorescence staining. Cells were plated on
cover glass and were irradiated with 10 Gy of y-irradiation two days later.

Determination of sensitivity to y-radiation by clonogenic assay. Parental Capan-1 cells and
Capan-1 derivatives constitutively expressing wild-type BRCA2 were plated on 60-mm cell
culture dish at the density of 1,000 cells per dish. Cells were irradiated with various doses of y-
radiation two days after plating and were cultured for another 16 days with media changed every
two days. Survived colonies were stained with crystal violet.

Capan-1 derivatives expressing wild-type BRCA2 regulated by tetracycline were plated
on each 60-mm dish at the density of 1,000 cells per dish in the presence of tetracycline. Each
cell line was plated on 20 dishes. Tetracycline was removed from 10 dishes of each cell line two
days later to induce the expression of wild-type BRCA2 (Induced). The remaining 10 dishes
were maintained in tetracycline-containing medium (Uninduced). Cells were irradiated with
various doses of y-radiation another two days later. All cells were fed with tetracycline-
containing media two days after the irradiation and cultured for another 11 (for Clone B) or 12
days (for Clone A) with media changed every two days. The survived colonies were stained with
crystal violet.

Determination of sensitivity to y-radiation by cell growth assay. Each clone of Capan-1
derivatives expressing wild-type BRCA?2 regulated by tetracycline were plated on ten 60-mm
dishes at the density of 50,000 cells per dish in the presence of tetracycline. Tetracycline was
removed from 5 dishes of each cell line two days after plating to induce the expression of wild-

type BRCA2, and these cells were maintained in tetracycline-free medium until the end of the
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experiment. Cells in the remaining 5 dishes were maintained in tetracycline-containing medium
throughout the experiment. Cells were irradiated with various doses of y-radiation 4 days after
plating. The number of survived cells at 6 (for Clone B) or 7 (for Clone A) days after irradiation
was determined by counting.

Parental MCF12A cells were plated on 60-mm cell culture dish at the density of 10,000
cells per dish and MCF12A derivatives expressing reduced levels of BRCA2 were plated on 60-
mm cell culture dish at the density of 50,000 cells per dish. Cells were irradiated with various
doses of y-radiation two days after plating. The number of survived cells at 6 days after
irradiation was determined by counting.
Determination of cell growth by clonogenic assay. Cells were plated in 6-well plate at a density
of 1000 cells/well in the tetracycline-containing media. Cells were allowed to grow for 2-1/2
weeks with media changed every two days in the tetracycline-containing media all the time or in
the tetracycline-free media beginning two days after plating.
Determination of tumor growth. Capan-1 cells and Capan-1 derivative cells were harvested by
trypsinization, washed with PBS then suspend in PBS at the density of 1x107 cells/ml. Ten
female nude mice of 6-8 weeks of age were each subcutaneously inoculated with 1 x 106 of cells
on each side of their flanks. Five mice in each group had been fed with doxycycline (0.2 mg/ml)
in drinking water for 5 days before the inoculation. The mice were continuously fed with water
containing doxycycline or without doxycycline. The tumor volume was measured on the
indicated days. Tumor volumes were determined by external measurement in two dimensions
and calculated using the equation ¥ = [L x W 2] x 0.5, where V is volume, L is length, and W is

width.
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Results

Generation of wild-type BRCA2-expressing Capan-1 derivatives

We first attempted to generate Capan-1 derivatives that expressed wild-type BRCA2
regulated by tetracycline. We transfected Capan-1 cells with a vector expressing tetracycline
regulated activator, tTA-IRES-Neo (46), together with a vector expressing BRCA2 ¢cDNA under
the control of tetracycline regulated promoter. After screening about 140 clones obtained from
two separate transfection experiments, we isolated two clones (clones A and B), one from each
transfection, that expressed wild-type BRCA2 tightly regulated by tetracycline (Figure 1A). We
also carried out transfection using a vector expressing reversed tetracycline regulated activator
together with a vector expressing BRCA2 ¢cDNA under the control of tetracycline regulated
promoter. We identified two clones (clones C1 and C2) that express wild-type BRCA2, however,
these two clones expressed wild-type BRCA2 constitutively (Figure 1B). Using co-
immunoprecipitation, we demonstrated that the exogenous wild-type BRCA2 associated with
RADS51 as expected (Figure 1C).

Sensitivity of Capan-1 derivatives expressing wild-type BRCA2 to DNA damages

We investigated whether expression of wild-type BRCA2 altered the sensitivity of
Capan-1 cells to y-radiation. We first compared the sensitivity to y-radiation of parental Capan-1
cells and clones C1 and C2 that expressed wild-type BRCA2 constitutively by using a
clonogenic assay. As shown in figure 2A, there is no detectable difference in the sensitivity to y-
radiation between Capan-1 and clones C1 or C2. We then compared the sensitivity to y-radiation
of clones A and B, which expressed wild-type BRCA2 regulated by tetracycline, between
expressing and not expressing wild-type BRCA2. A clonogenic assay and an assay that counting

survival cells were used. As shown in figures 2B and 3, there is no detectable difference in the

10
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sensitivity to y-radiation between clones A or B expressed or did not express wild-type BRCA2.
Our results show that expression of wild-type BRCA2 do not change the sensitivity of Capan-1
cells to y-radiation.

We also investigated whether expression of wild-type BRCA?2 altered the sensitivity of
Capan-1 cells to DNA damaging chemicals. We chose methyl methanesulfonate (MMS),
mitomycin C, etoposide and mitoxantrone for this study. We performed this study three times
and with duplicated experiments each time. Our results show that there is no apparent difference
in the sensitivity to DNA damaging drugs between the Capan-1 cells that expressed and that did
not express wild-type BRCA2 (Figure 4).

Generation of MCF12A derivatives expressing reduced levels of BRCA2

We generated MCF12A derivatives that expressed reduced levels of BRCA2 by
transfecting MCF12A cells with a plasmid expressing two siRNAs targeting BRCA2, together
with a plasmid expressing G418 resistant gene. As shown in figure 5, we have obtained two

clones (clones 1 and 2) that express reduced levels of BRCA2.

Sensitivity of MCF12A derivatives expressing reduced levels of BRCA2 to DNA damages

It has been reported that BRCAL is required for y-radiation induced RADS1 nuclear foci
formation (49). We therefore first examined whether there was difference in forming RAD51
nuclear foci between MCF12A cells and MCF12A derivatives that expressed reduced levels of
BRCA2 upon y-irradiation. As shown in figure 6, RAD51 nuclear foci were formed in the
majority of MCF12A cells but were rarely detectable in clone 2 that expressed reduced levels of

BRCAZ2. Clone 1 also formed very few y-irradiation induced RADS1 nuclear foci (data not

shown).

11
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We next examined the viability of parental MCF12A cells and MCF12A derivatives that
expressed reduced levels of BRCA?2 after y-irradiation by counting survived cells. As shown in
figure 7, both clones 1 and 2 cells were more sensitive to y-irradiation than did the parental
MCF12A cells.

Suppression of Capan-1 cells growth by wild-type BRCA2

While we were investigating the sensitivity to y-irradiation of Capan-1 cells and Capan-1
derivatives that expressed wild-type BRCA?2 by clonogenic assay, we noticed that clones A grew
much slower when it was induced to express wild-type BRCA?2 than when it was not. We
examined the suppression of Capan-1 cells growth by wild-type BRCA2 in detail. As shown in
figure 8, expression of wild-type BRCA2 suppressed the growth of both clones A and B.

Expression of wild-type BRCA2 suppressed the growth of Capan-1 cells not only in vitro
but also in vivo. As shown in figure 9, expression of wild-type BRCA2 suppressed the growth of
tumors resulting from clone A.

These results have been published (50).

BRCA?2 may be essential for the growth of breast cancer cells

Our attempts to obtain MCF7 derivatives expressing reduced levels of BRCA2 resulted in
only three G418 resistant clones in two separated transfection experiments and none of these
clones expressed reduced levels of BRCA2. We therefore performed more detailed investigation
of this observation. As shown in figure 11, although colonies were formed in MCF7 cells
transfected with a plasmid expressing a control siRNA, no colony was form in cells transfected
with the same plasmid expressing siRNA targeting BRCA2 used to generate MCF12A

derivatives expressing reduced levels of BRCA2.

12
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Discussion

We show that reduction of BRCA2 levels impairs the formation of RADS51 nuclear foci
in MCF12A cells treated with y-irradiation and increase the sensitivity of MCF12A cells to y-
irradiation. These observations are consistent with suggestions that BRCA?2 plays an important
role in repairing double-stranded DNA breaks (24, 37-40). On the other hand, our results show
that expression of wild-type BRCA2 does not have detectable effect on the sensitivity to DNA
damage of Capan-1 cells. Our observations are in contrast to that of expressing human wild type
BRCAZ2 reduces the sensitivity to y-irradiation and mitomycin C in a Chinese hamster ovary
(CHO) cell line that expresses only endogenous mutant Brca2 (51). It is unlikely that the BRCA2
expressed in our Capan-1 derivatives has undetected mutations, we sequenced the entire BRCA2
cDNA used in our study. Moreover, we showed that the wild type BRCA2 associates with
RADS51 in Capan-1 cells and suppressed the growth of Capan-1 cells. A more likely explanation
for difference between our results of studying Capan-1 cells and those of studying CHO cells is
that Capan-1 cells are derived from human pancreatic cancer and may have other genetic
alterations that affect the DNA repair.

We show that BRCA2 has paradoxical effects on cells growth. On one hand expression
of the wild-type BRCA2 appears to suppress the growth of Capan-1 cells, which express only
endogenous mutant BRCA2. On the other hand, reduction of levels of wild-type BRCA2 appears
to inhibit the growth of MCF7 cells. It would be very important to elucidate mechanisms for how

BRCA2 regulate cell growth.

13
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Figure legends

Figure 1. Expression of wild-type BRCA2 in Capan-1 derivatives.

(A, B) Tetracycline regulated and constitutive expression of wild-type BRCA2. Clones A and B
expressed wild-type BRCA2 under the regulation of tetracycline whereas Clones C1 and C2
expressed wild-type BRCA2 constitutively. Clones A and B were not induced (U), or induced (I)
to express wild-type BRCA?2 for one (I-1) or two (I-2) days in panel (B). (C) Association of
RADS51 with wild-type BRCA2. Clone A cells were not induced (U), or induced (I) to express
wild-type BRCA2 for two days and cell lysates were prepared. BRCA2 and RADS1 proteins in
the total cell lysate (Total) or in the complexes immunoprecipitated by using an anti-BRCA2
antibody (IP) were detected by immunoblotting. The solid and dashed arrows indicate the wild-

type and truncated BRCA2, respectively.

Figure 2. Sensitivity of Capan-1 derivatives to y-radiation determined by clonogenic assay.

(A) Sensitivity to y-radiation of parental Capan-1 cells and Capan-1 derivatives expressing wild-
type BRCA2. One thousand cells were plated on each 60-mm cell culture dish. Cells were
irradiated with the indicated doses of y-radiation two days after plating and were cultured for
another 16 days with media changed every two days. Survived colonies were stained with crystal
violet. The top panel illustrates the time line of the experiment and the lower panel shows the
result of a triplicate experiment. (B) Sensitivity to y-radiation of Capan-1 derivatives expressing
wild-type BRCA2 regulated by tetracycline. One thousand cells were plated on each 60-mm dish
in the presence of tetracycline. Each cell line was plated on 20 dishes. Tetracycline was removed

from 10 dishes of each cell line two days later to induce the expression of wild-type BRCA2

14
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(Induced). The remaining 10 dishes were maintained in tetracycline-containing medium
(Uninduced). Cells were irradiated with indicated doses of y-radiation another two days later. All
cells were fed with tetracycline-containing media two days after the irradiation and cultured for
another 11 or 12 days as indicated with media changed every two days. The survived colonies
were stained with crystal violet. The top panel illustrates the time line of the experiment. The

lower panel shows the result of a duplicate experiment of Clones A and B as indicated.

Figure 3. Sensitivity of Capan-1 derivatives to y-radiation determined by cell growth assay.

The top panel illustrates the time line of the experiment. The middle and the low panel show the
result of Clones A and B, respectively. Each panel shows the results of three experiments. Fifty
thousand cells were plated on each of ten 60-mm dishes in the presence of tetracycline.
Tetracycline was removed from 5 dishes of each cell line two days after plating to induce the
expression of wild-type BRCAZ2 (I), and these cells were maintained in tetracycline-free medium
until the end of the experiment. Cells in the remaining 5 dishes were maintained in tetracycline-
containing medium throughout the experiment (U). Cells were irradiated with indicated doses of

y-radiation 4 days after plating. The number of survived cells at 6 or 7 days after irradiation as

indicated were determined by counting.

Figure 4. Sensitivity of Capan-1 derivatives to DNA damaging drugs.

One thousand indicated cells were plated on each well of 96-well plate in the presence of
tetracycline. Tetracycline was removed from (I) or maintained in (U) the media to regulate the
expression of wild-type BRCA2 two days after cell plating. Another two days later, cells were

treated with indicated drugs at indicated doses. Cells were treated with MMS for one hour,

15
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washed then cultured in tetracycline-free (I) or tetracycline-containing (U) media for two days.
For all other drugs, cells were treated for two days in tetracycline-free (I) or tetracycline-
containing (U) media. Survived cells were measured by using MTT assay. The results of three

experiments are shown.

Figure 5. Reduction of BRCA2 expression in MCF12A derivatives.
BRCA2 and B-catenin in cell lysate containing equal amounts of total protein prepared from

MCFI12A, clone 1 and clone 2 as indicated were detected by immunoblotting.

Figure 6. Forming y-irradiation induced RADS1 nuclear foci in a MCF12A derivative expressing
reducéd levels of BRCA2. MCF12A and Clone 2, which express reduced levels of BRCA2, cells
were stained for RAD51 8 hr after treated with 10 Gy y-irradiation. Cells were counterstained

with DAPI to reveal nuclei.

Figure 7. Sensitivity of MCF12A derivatives to y-tadiation by cell growth assay.

The top and the bottom panels show results of two separate experiments.

Figure 8. Inhibition of the growth of Capan-1 cells by wild-type BRCA2 in vitro.

One thousand cells from each of the indicated Capan-1 derivatives were plated in each well of
six-well plates in medium containing tetracycline. Cells were grown for 2-1/2 weeks, either in
media containing tetracycline (Uninduced) or in tetracycline-free media (Induced) beginning 2
days after plating. The resulting colonies were stained with crystal violet. The results shown are

from a triplicate experiment.
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Figure 9. Inhibition of the growth of Capan-1 cells by wild-type BRCA2 in vivo.

Ten nude mice were subcutaneously inoculated with indicated cells on each side of their flanks.
Five mice in each group had been fed with doxycycline in drinking water for 5 days before the
inoculation. The mice were continuously fed with water containing doxycycline (uninduced,
open squares) or without doxycycline (induced, closed squares). The tumor volume was

measured on the indicated days.

Figure 10. Inhibition of the growth of MCF?7 cells by siRNA targeting BRCA2.

MCCF?7 cells were transfected with a plasmid expressing G418 resistant gene together with a
plasmid expressing indicated siRNA at a ratio of 1:9. Transfected cells were cultured in media
containing G418 for 30-35 days and the resulting colonies were stained with crystal violet. (A)

The result of experiment 1. (B) Summary of results of 4 independent experiments.

17
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Figure 5
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Figure 7
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Figure 10
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Key Research Accomplishments

We have established Capan-1 derivatives that express wild-type BRCA2 constitutively or
under the regulation of tetracycline.

We show that expression of wild-type BRCA2 does not reduce the sensitivity of Capan-1
cells to DNA damaging agents.

We show that expression of wild-type BRCA2 reduces the growth of Capan-1 cells in vitro
and in vivo.

We have established MCF12A derivatives that express reduced levels of BRCA2.

We show that reduction of BRCA2 levels results in MCF12A cells to be more sensitive to y-
irradiation.

Our results suggest that BRCA2 may be essential of the growth of MCF7 cells.

Reportable Outcomes

Results of characterization of wild-type BRCA2-expressing Capan-1 derivatives have been
reported in the 51st Annual Meeting of the American Society of Human Genetics and the 3rd
Era of Hope Meeting.

A paper showing the effect of expressing wild-type BRCA2 on the growth of Capan-1 cells

has been published (Cancer Res., 62: 1311-1314, 2002).

Conclusions

We have accomplished all tasks except the establishment and characterization of MCF7

derivatives that express reduced levels of BRCA?2 this is because that BRCA2 appears to be

essential for the growth of MCF7 cells.
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